# Reservoir Management Online Oil-In-Water Monitor



Darrell L. Gallup - ETC, Papon Thanomkiat - CGUG, Surachai Pongsuthana - CGUG

## Background

Older generation online oil-in-water (OiW) monitors may suffer from fouling of optics due to scales, soaps, emulsions, sludge, etc., resulting in inaccurate (usually low) concentrations.

New generation OiW monitors:

- Yield more accurate OiW concentrations
- Improve accuracy of the OiW measurements, allowing operators to optimize water treatment systems so that more product is recovered and less is re-injected or discharged into the environment.
- Reduce operator maintenance and recalibration significantly
- Optimize water treatment systems to limit product losses
- Reduce liability for hydrocarbon discharges into the environment

#### **Lessons Learned**

The new monitors:

- Have proven more accurate in detecting OiW in upstream produced water and downstream wastewater streams.
- Provide accurate OiW concentrations in disposal water and may be used to monitor flotation unit efficiency since they may detect up to 2% oil.
- Are maintenance-free and correlate concentrations well with grab samples due to the ultrasonic cleaning feature of these monitors.
- Save labor amounts and chemicals used to extract oil from water during implementation.

#### **Best Practices**

The new monitors:

- Have proven to increase measurement accuracy and reduce operator maintenance.
- Determine product loss via reinjection or surface discharge.
- Track the efficiency of water treatment systems to enhance oil recovery and revenues and reduce liability of environmental discharges.

### Challenge

The primary challenge is convincingly conveying that the new monitors out-perform older monitors and are cost-effective investments. The cost of the new monitors is about twice the cost of the older monitors.

## **Measurement Principles**

- The measurement technique incorporated in the Advanced Sensor's monitors is laser-induced fluorescence.
- *Ultra Violet Optical Fluorescence* is used to measure oil content. Fluorescence is the preferred method for measuring low oil levels (0 to 1,000 ppm).
- The transducer sensor head is a combined optical and ultrasonic component. The laser passes through a smaller sapphire window to excite the water sample, while the fluorescent properties are captured via optical fiber light guides and taken to:
- An optical filter and photo multiplier tube (PMT). The optical filter selected depends on the wavelength properties in the water.
- An optical UV spectrometer (for the EX1000).

#### **Chemical Interference**

Many process chemicals fluoresce, and many fluoresce more than oil.

The fluorescence of chemical additives can swamp the fluorescence of oil in certain parts of the optical Spectra, creating a false high ppm reading.

| Chemical | Typically                  | Concent'n | Before  | After   |
|----------|----------------------------|-----------|---------|---------|
| EC1110A  | Corrosion inhibitor        | 42 ppm    | 15 ppm  | 1.2 ppm |
| EC2176A  | Demulsifier                | 9 ppm     | 7.2 ppm | 0.6 ppm |
| EC1188A  | Heating medium Cl          | 0.60 ppm  | 0.0 ppm | 0.0 ppm |
| EC1442A  | Corrosion inhibitor        | 45 ppm    | 6.2 ppm | 0.0 ppm |
| EC9021A  | H <sub>2</sub> S scavenger | 73 ppm    | 6.9 ppm | 0.0 ppm |
| EC6354A  | Coagulant/de-oiler         | 100 ppm   | 0.0 ppm | 0.0 ppm |
| EC1470A  | Corrosion inhibitor        | 100 ppm   | 6.5 ppm | 0.7 ppm |
| Methanol |                            | 100%      | 16 ppm  | 0.0 ppm |
| Meg      |                            | 100%      | 12 ppm  | 0.0 ppm |















#### Installation on Benchamas Production Platform

01-Jan03-Jan04-Jan05-Jan07-Jan09-Jan10-Jan112-Jan113-Jan115-Jan116-Jan 17- 22- 24-Jan26-Jan26-Jan30-Jan 02- 03- 05- 06- 07- Jan Jan Jan



## Sampling Chamber



## Conclusions

- The EX-100 installed on Tantawan Explorer has been performing well.
- There is excellent agreement with grab samples SX with Wilks IR and hexane gravimetry.
- The operators love "maintenance free" monitor.
- The unit installed on Benchamas Explorer performs well after being upgraded to EX-1000, because the interference from the demulsifier was eliminated.
- The EX-1000 installed on Benchamas processing platform has been performing well, but the parameter should be adjusted to get better agreement with the laboratory result.
- Advanced Sensor's OIW monitors reduce lab technician time and solvent use/exposure.
- Advanced Sensor's OIW monitors provide an immediate alarm to control rooms when the water treatment system is upset.