Use of on-line monitoring for oil discharge reporting

Experiences from BRAGE Platform

Arne Henriksen, Principal Engineer StatoilHydro

Project History

- Project 2005 --> 2007 (HYDRO projects)
 - Qualify on-line Oil in Water Analyser
 - Establish "the Best Practise" for process control (trend measurements) and discharge to sea (reporting to SFT)
 - Co-ordinate ongoing activities for on-line oil in water measurements in Hydro
 - Project owner: Gunnar Breivik, HMS
 - Steering group (Bergen): Jostein Toft, (Toril Utvik), Ståle Teigen, Geir Engvoldsen
 - Project group (RCP): Arne Henriksen, Jørn Paus, + +
 - Brage platform: Yngve Tvedt, Hans Kåre Borge, Laboratory, ++

2005

From 13 analysers 3 were selected for testing in test rig in Porsgrunn Turner Design, Teledyne Analytical Instruments and <u>Advanced Sensors</u>

2006 --> 2007

- Joint Venture Project
 Research Centre Porsgrunn, Advanced Sensors Ltd. and Brage platform
- Develop and qualify the on-line OIW-EX100 analyser for reporting oil discharge to sea

On-line Analysis for oil concentration in produced water

Conclusion remarks given at last year conference

On-Line Analyser at Offshore Platform will be Qualified and Approved in 2007 by the Authority for reporting oil discharge to sea

Qualification of OIW-EX1000 analyser at BRAGE

Manual sampling

On-line Analysis

OIW-EX1000 Analyser at BRAGE

UV Fluorescence Analyser measures oil concentration in produced water

On-line Analyser installed after the Degassing Tank

Qualification program is in progress for SFT reporting oil discharges to sea

Intranet connection to the monitor from Research Centre in Porsgrunn

BRAGE monitor

On-line oil in water measurements for real time process control

Light from the UV laser in the sample chamber

Advanced Sensors OIW-EX1000 monitor at Brage

Automatic Cleaning System in OIW-EX1000 Analyser

Automatic cleaning system of the sapphire glass in front of the light probes based on ultrasonic wave generated by the transducer. Result after 30 days continuing measurements.

On-line oil in water measurements for real time process control

Data: oil fluorescence and predicted oil ppm [OIW-EX1000 Monitor at BRAGE]

On-line oil in water measurements for real time process control

Monitor Screen at BRAGE Control Room

Results from Brage

- Test period 12. March to 15. April
 - Mean deviation between GC method and on-line method: - 4.2 mg/l (std dev. 5.0 mg/l) for 102 spot samples
- " Monthly reporting" 12. March 15. April
 - Spot samples and same time period on-line
 - GC method (average of 4 spot samples):13.5 mg/l
 - On-line analysis (spot sampling time):17.7 mg/l
 - On-line analysis (mean over 24 hours):17.8 mg/l

Spot samples

24 hours report from **BRAGE OIW-EX1000 Degassing Tank**

Daily online Oil-in-Water Monitor Report Date: 2007-09-19.

RESULT for DEGASSING TANK and OTW-EX1000 Monitor (200011)

All data are collected from Data file: [SN0011-19_Sep_07-00_00_00_Wed_OIW_Data.csv]

Oil concentration for reporting: 14 ppm

Statistical data						
Parameter	gg.mMessured	ррда-Trend	Difference [M - T]	ggag-All (sec)	Difference [M – Alf]	Water-Temp. "C (sec)
Average	14.2	13.2	1.0	13.4	1.2	73.2
Standard Deviation	21	1.7	0.4	2.8	-0.7	1.2
Measurements	133	133	0	S#3#1		S#341
Maximum	22.5	20.2	2.3	28.5	-6.0	76.5
Minimum	10.6	9.5	11	7.8	2.8	70.3
% > 30 ppm	0	0	0	0	-	
% > 75 ppm	0	0	0	0		

Plot diagram, all measurements of ppm-Measured and ppm-Trend

Spot samples analysed Time sampling 20 20 30 - 20 21 20

COMMENTS:

APPROVED: (Yes/No): Date/Name:

Analysis of oil field chemicals in produced water (Full Scan Spectrometer)

Advantages on-line Analyser

Environment

- Oil discharge analysis for all 24 hours
- Operator can handle quickly to process disturbance and minimise oil to sea discharge
- Platform can use the analysis for SFT reporting
- Reduction in Lab work at the platform

Advantages on-line Analyser

PRODUCTION

Real-time analysis can give

- better process control
- process optimization

for achieving

- higher oil production
- without increased oil discharges

Potential for analysis of

- higher oil concentration
- oil field chemicals

Control Plot from OPIS [BRAGE] read at the platform or onshore

Goal for the future

On-line analysis approved by SFT for reporting of oil discharges to sea

Full time monitoring of oil discharges to sea

Real-time on-line analysis of oil components in separation processes for

- better process control
- reduction of oil field chemicals
- higher oil production
- lower oil discharges
- sub sea installation

